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Abstract

There is widespread acceptance that mathematics is important, for an individual and for
society. However there are still those who disagree arguing that the subject is boring and
irrelevant. It is therefore crucial that mathematics teaching strives to engage all learners at
all levels, without of course sacrificing the rigour and ‘essence’ of the subject. In this talk, I
will argue that one way to achieve both rigour and broader access to mathematics lies with
using appropriately designed digital technology. I will illustrate my argument with examples
from research and practice.
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Introduction

The importance of mathematics for an individual and for society is widely recognized. In
the UK there has even been a report that has quantified the ways in which Mathematical Sciences
Research influences economic performance and its economic value in terms of direct
employment and Gross Value Added:

“Working in partnership with the Council for the Mathematical Sciences (CMS), the
Engineering and Physical Sciences Research Council (EPSRC) commissioned an
independent study which has shown that 10 per cent of jobs and 16 per cent of Gross Value
Added (GVA) to the UK economy stems from mathematical sciences research” (EPSRC,
2012).

The report goes on to argue that:

“The fruits of mathematical research affect the daily lives of everyone in the UK, for
example:

Smart-phones use mathematical techniques to maximise the amount of information that can
be transmitted

Weather forecasting is based on complex mathematical models
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The latest Hollywood blockbusters take advantage of the mathematics behind software for
3D modelling to showcase cutting-edge special effects

Elite athletes at the 2012 Olympic Games used tools based on sophisticated maths to
maximise their performance.

It is not just contemporary mathematics research that can have an impact. Research from
the last century has paved the way for technology used in a range of activities, goods and
services, such as mobile telecommunications and medical devices.” (EPSRC, 2012).

As a result of reports such as this one and the growing awareness of the importance of
mathematics, alongside I must add the intrinsic interest of the subject, there is a relentless drive
to improve access and engagement with the subject at every level of education, including
increasing recruitment to mathematics courses for students post-16 years, an age when students
at the moment in England can drop the subject.

Increasing awareness of the significance and standing of mathematics has proved to be a
success story in England. However there are still challenges to be faced, not least that the most
commonly-held view of mathematics still tends to be that it serves little or no purpose. This
position is aptly summarised in a recent piece by a well-known journalist in a national newspaper
in the UK, Simon Jenkins:

“ I learned maths. I found it tough and enjoyable. Algebra, trigonometry, differential
calculus, logarithms and primes held no mystery, but they were even more pointless than
Latin and Greek. Only a handful of my contemporaries went on to use maths
afterwards”. (emphasis added, Jenkins, Guardian 18 February 2014)

Mathematics, as many have noted, is plagued by a culture of ‘speed’, ‘getting an answer
quickly with apparently little effort, of ‘winning the race’; a ‘genius’ culture that all too often
leads to many giving up the subject, as aptly summarised in the following quote from Alex
Bellos:

“Athletes don’t quit their sport just because one their teammates outshines them. And yet
I see promising young mathematicians quit every year, even though they love mathematics,
because someone in their range of vision was ‘ahead’ of them” (Bellos’ review of
Ellenberg’s book ‘How not to be wrong: the Hidden Maths of Everyday Life’ 2014.)

This ‘genius culture’ along with learned helplessness “I simply can’t do maths” (for an
early discussion of learned helplessness, see Diener & Dweck, 1980) is further aggravated by the
fact that most people of all ages regard mathematics simply as a set of procedures and rules.
They fail to glimpse in their efforts to master all the ‘machinery of the subject’, the key
mathematical concepts, structures and relationships of the subject. It is only by providing a
mathematical lens on the world and on school mathematics – making it more visible - that
learners might come to see the point of all their efforts.

My claim is that a major challenge for increasing such engagement with mathematics is
to address its current invisibility, and one way to do this is to harness digital technology, and,
crucially, to do this in ways that are systematically tested to be effective in design research, a
point I will return to later. All too often mathematics is a black box that is kept closed, either as
there is no reason to try to open it, or it is deemed as too complicated to even try. Strings of
symbols tend to be meaningless to most people. But is it not possible for mathematics educators
to work together to open the ‘black box’ just enough to convey the mathematical concepts
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behind in ways that are comprehensible to the audience at hand? The Mathematics Matters series
of the Institute of Mathematics and its Applications provides an example of one possible
approach. (http://ima.org.uk/i_love_maths/mathematics_matters.cfm.htm). In these case studies,
mathematics research has been described in language that attempts to be meaningful to a diverse
audience.

“The industry and technology that surrounds us owes a great debt to modern mathematics
research, yet this fact is perfectly hidden in its physical manifestation. The concern with this
state of affairs is that what is unknown cannot be appreciated or valued. This is not a simple
matter to resolve since, although current mathematics significantly influences the familiar,
the mathematics itself may seem impenetrable to the very people whose views we seek to
influence. The Mathematics Matters case studies have been written to resolve this problem.
Examples of contemporary research and its applications have been presented in a series of
papers which describe the mathematics, without resort to technical detail but also without
patronising over-simplification. In this way, policy makers can understand how mathematics
research influences so many areas of modern life. However, in order to provide a satisfying
level of detail to those with a more scientific training, each paper also includes a technical
supplement, which describes the work in more detail, and may include references to
published work which confirm the credentials of the research. From its original concept, the
work has now progressed over four phases and includes such case studies as:

On Your Bike: Accurately Measuring Cycling Numbers

Official estimates suggest the number of cycle journeys in the UK could be declining. With
a leading transport charity arguing otherwise, mathematics is being used to paint the true
picture of cycling in the UK in order to secure important government funding.

On the Radar Calibrating Air-traffic Control Antennae

Air-traffic control is a vital part of the aviation system that
contributes billions of pounds annually to the UK economy.
Without mathematics, however, the radar antennas that
underpin the network of primary and secondary surveillance
radars operating to ensure the safety of air vehicles operating
in and beyond UK airspace would take longer and require more
effort to calibrate.

A Smarter Future for Next Generation Local Electricity
Networks

The vision of a low carbon future brings its own challenges
when it comes to maintaining an effective electricity supply
system. Mathematicians are working to give decision makers
richer understanding, greater flexibility and a more solid
evidence base on which to inform their important choices.

http://ima.org.uk/i_love_maths/mathematics_matters.cfm.htm).

One early case study concerns the computer animation industry that relies on a steady stream
of mathematicians to produce the images found on our cinema and television screens (case study
Advancing the Digital Arts), which I will illustrate briefly in my presentation.
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Becoming aware of the potential power of digital technology and how it is framed by
mathematics points to a possible way that we might engage more learners with mathematics in
the digital age, which I will elaborate a below.

The potential and challenges for research in mathematics education

In my keynote to the ICME 11 congress in Mexico in 2008, I drew on the mass of
evidence from research and practice, to set out what I saw as a vision for the potential of digital
technologies to transform the teaching and learning of mathematics and to reinvigorate
engagement with mathematics. I suggested that digital technologies could offer:

 dynamic & visual tools that allow mathematics to be explored in a shared space;
 tools that outsource processing power that previously could only be undertaken by

humans;
 new representational infrastructures for mathematics;
 an infrastructure for supporting connectivity to support mathematics collaboration;
 connections between school mathematics and learners’ agendas and culture;
 intelligent support for learners while engaged in exploratory environments.

Time has moved on since 2008. Nonetheless I adhere to these six headings as a
framework for future research. There are other potential areas for study that might now be added
to my list: for example, the potential of digital technology to build into student activity 'invisible'
formative assessment with data collected as students work on their solutions (individually or
collectively) resulting in assessments that are more genuinely personal and adaptive; or,
functionalities embedded in activities that are particularly tuned to students’ previously identified
learning needs or goals.

In one area at least there has been a dramatic change, and that is massive increase in
infrastructure to support connectivity and access to the web, which was in its infancy in 2008, at
least in schools. But the question remains as to how far this connectivity is effectively exploited
in the interests of mathematics education: should it be and if so how? Can this new functionality
that is so widely available and taken for granted in the daily lives of many be harnessed for the
purpose of helping learners and teachers share, discuss and take ownership of the mathematics,
and better appreciate the point of the subject beyond its calculational side?

Theoretical background1

There has been much discussion and writing about relevant theories that have been
developed, to underpin research into using digital technologies in mathematics education (for an
overview see for example the ICMI Study Technology Revisited, Hoyles & Lagrange, 2011). It
is also noteworthy that for this ICMI study we were unable to collect papers on this subject
except from those that were specifically invited. My own research has taken inspiration from the
work of Seymour Papert and I remain committed to constructionism as a way of thinking about
using computers for mathematics learning. So what is constructionism? Seymour Papert
launched the notion of constructionism in the mid-nineteen eighties, with the central idea that a
powerful way for learners to build knowledge structures in their mind, is to build with external

1 Some of the following text builds on Hoyles, C. The proceedings of the Vth SIPEM (2012) Petrópolis, Rio de
Janeiro Sociedade Brasileira de Educação Matemática – SBEM pp 1-12
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representations, to construct physical or virtual entities that can be reflected on, edited and
shared:

Constructionism […] shares constructivism’s connotation of learning as “building
knowledge structures” irrespective of the circumstances of the learning. It then adds the
idea that this happens especially felicitously in a context where the learner is consciously
engaged in constructing a public entity, whether it’s a sand castle on the beach or a theory
of the universe. (Papert & Harel, 1991, p.1).

Thus, the constructionist environment must first represent a compelling medium in which
to explore and learn, much as one can master a foreign language by living in the country where it
is widely spoken. Second, in the environment, the learner is able to adopt a construction-based
approach to learning in which there is some ownership by learners of the construction process,
and which, potentially at least, leads to their engagement, confidence and empowerment. Third,
exploration through building enables the learner to encounter ‘powerful ideas’ or intellectual
nuggets, while ostensibly constructing something else. This has led to the design of microworlds,
where a successful microworld is both an epistemological and an emotional universe, a place
where powerful (mathematical, but also scientific, musical or artistic) ideas can be explored; but
explored ‘in safety’, acting as an incubator both in the sense of fostering conceptual growth, and
a place where it is safe to make mistakes and show ignorance: And, of course, centrally these
days, a place where ideas can be effortlessly shared, remixed and improved (for an earlier
discussion of these twin aspects of engaging through building and sharing, see Noss and Hoyles,
2006).

It is important to emphasise that, as Papert was at pains to point out, constructionism
seeks to develop knowledge structures in the mind alongside physical or virtual structures
external to the mind, and as such is as much a theory of epistemology as of pedagogy, (see Harel
& Papert, 1991). In fact in the ICMI study mentioned above (Hoyles & Lagrange, 2011), we
tried to insist all participants in the study conference should think about ‘Papert’s 10%, the 10%
of knowledge that would need to be rethought given the use of new tools.

Over the years, constructionism has provided the framework for a fertile strand of
research and development and continues to attract innovative ways of designing tools and
working with learners from across the world and with different age groups (reference the recent
Constructionism conference, 2014, and to the Special Edition of Mathematics Today that will be
published in Dec 2015, Windows on Advanced Mathematics, Hoyles and Noss, eds).

One prevailing challenge is that although microworlds designed with a constructionist
agenda are intended to orient students towards a way of thinking carefully structured by the
designers, learners must at the same time have some autonomy. This means, of course, that
learning will not occur precisely as planned. Thus, one has to ask how is it possible to balance
self-motivated activity while maximising the opportunity to encounter the planned powerful
ideas (see the ‘Play Paradox’, Noss & Hoyles, 1996).

There is also the complex issue of the role the tools play in shaping the mathematical
knowledge and mathematical learning, and at the same time being shaped by the interactions of
the students, called the process of instrumental genesis by some researchers. Drijvers et al (2010)
put it thus when talking about the instrumental approach:
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“According to this approach [The instrumental approach], the use of a technological tool
involves a process of instrumental genesis, during which the object or artefact is turned
into an instrument. This instrument is a psychological construct, which combines the
artefact and the schemes (in the sense of Vergnaud, (1996)) the user develops to use it for
specific types of tasks. In such instrumentation schemes, technical knowledge about the
artefact and domain-specific knowledge (in this case, mathematical knowledge) are
intertwined. Instrumental genesis, therefore, is essentially the co-emergence of schemes
and techniques for using the artefact”.

Much attention has been paid by researchers to the issue of instrumentation but rather less
to instrumentalisation - the reciprocal relationship whereby the medium or the tools are changed
during interaction and along with this the knowledge developed (we argued in Noss and Hoyles
1996 that the medium shapes that mathematical meanings through its use and at the same time is
shaped by use).

Dynamic and visual tools

Digital technology can provide tools that are dynamic, graphical and interactive. Using
these tools, learners can explore mathematical objects from different but interlinked perspectives,
where the relationships that are key for mathematical understanding are highlighted, made
tangible and manipulable. The crucial point is that the semiotic mediation of the tools can
support the process of mathematising by focusing the learner’s attention on the things that
matter: as Weir (1987) put it, “the things that matter are the things you have commands to
change.” (p. 65). The computer screen affords the opportunity for teachers and students to make
explicit that which is implicit, and draw attention to that which is often left unnoticed (Noss &
Hoyles, 1996).

Central to this research endeavour is to identify which out of all the aspects that might
change are judged by students to be important and which not? My conjecture is that to engage
with the dynamic microworld in the ways anticipated by the designer, it is important that some
aspect of the constructionist agenda is intact – the black box is opened ‘just a little’, the
microworld not quite complete and students actually able to build something for themselves.
When these openings are on offer, I would argue that the tool is more likely to open a window on
the mathematical ideas. In fact evidence for this can be gleaned from research undertaken
around, what are called half –baked microworlds, microworlds that are intentionally designed as
malleable and improvable with students challenged to find faults and fix them, (see for example
Healy & Kynigos, 2010).

Other research from outside the school mathematics community that focussed on
workplaces is relevant here (see Hoyles, Noss, Kent, & Bakker, 2010). In a later summary,
Hoyles, Noss, Kent, & Bakker, 2013 argued that there are contrary views regarding the
mathematical needs of employees in workplaces, a problem exacerbated by the ubiquity of
information technologies and the widespread automation of routine procedures, which leave little
if any trace of the mathematical processes going on. We pointed to a particular difficulty, that of
widespread pseudo-mathematical interpretation of symbolic output in workplaces. This certainly
impedes communication, but can be challenged by designing what we termed ‘technological
enhanced boundary objects’ (TEBOs) with appropriate dynamic digital technology that focussed
on moving ‘beyond’ the calculational side. I take just one example. We identified a ubiquitous
requirement in workplaces to understand and reduce variation, summarized in two process
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capability indices, Cp, a measure of spread, and Cpk, a measure combining spread and central
tendency in relation to specification limits (Hoyles, Bakker, Kent, & Noss, 2007; Bakker, Kent,
Noss, & Hoyles, 2009). Let us look at Cp, which summarises the spread of a distribution in
relation to the required specification for the process:

Cp=USL − LSL
6s

where: USL = upper specification limit

LSL = lower specification limit

 = standard deviation

We found that employees were shown these formulae and plugged in values for the
variables but interpreted the results pseudo-mathematically, making little if any connections to
data or underlying mathematical relationships (Hoyles et al., 2010). The capability indices were
supposed to illustrate that the spread of the data was within specification limits (or not). But in
fact for most employees did not ‘see’ this and simply knew that their manager would complain or
‘they would be beaten up’ for low Cp’s”. Thus Cp and Cpk were viewed simply as management
devices unrelated to the data from the production line: the models were just too baffling. We
sought to address the problem by designing a TEBOs where employees could manipulate the key
variables: the one for Cp is illustrated in Fig 1 below.

Figure 1: Screen capture image of the Cp tool.

Figure 1 illustrates the TEBO for Cp that aims to reveal the fundamental nature of Cp
without the need for engagement with the algebraic definition or manual calculation. The TEBO
allowed employees to manipulate the key variables, the mean and the spread, in relation to the
specification limits and to see that what looks like a complicated formula is just “the number of
times the ‘bottom line goes into the top line” – and the bottom line is 6 standards deviations long.
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Although our samples were small, there was remarkable take-up in the use of the tools,
not only with the shop-floor workers but also with supervisors and engineers; and beyond the
original factories, spreading to SPC courses worldwide (Bakker et al., 2009).

From design experiments to innovation at scale

So let us return to my main agenda, which is to enhance engagement with mathematics in
this digital age. It is clear from research evidence and from practice that for this to happen
teachers must be a central part of the process. But how can they best be supported so as to fulfil
this role? I suggest the evidence points to the following set of prerequisite activities:

i) Teachers tackle the mathematics for themselves with the digital tools (before and
alongside thinking about pedagogy and embedding in practice), thus allowing them,
regardless of experience, the time and space to take on the role of learner,

ii) Teachers co-design activity sequences that embed the digital tools and make explicit
appropriate didactic strategies,

iii) Teachers try out the activities iteratively in classrooms as a collective effort and
debug together.

This design process is time-consuming and challenging, not least because at every phase
the dialectical influence of tools on mathematical expression and communication must explored.
I will give just one example of this design process, that of Cornerstone Mathematics (CM). CM
set out to exploit the dynamic and multi-representational potential of digital technology to
enhance learners’ engagement and understanding of some key mathematical ideas that most (or
all?) students aged 11-14 years will face in school. In brief, the CM approach is to design
interventions that integrate professional development, curriculum materials, and software in a
unified curricular activity system (see Vahey, 2013), where the activities and in particular the use
of digital technology focused on core, deep and challenging mathematics. Thus CM comprises
three inter-dependent elements, each of which are critical for any innovation and each of which
have been extensively researched and developed over many years, that is: digital technology
designed and tuned for specific mathematics learning, iteratively designed student curriculum to
replace current practice along with a teachers’ guide, and professional development for teachers.
CM to date comprises three curriculum units, on linear functions, geometrical similarity, and
patterns and expressions. What we call ‘landmark activities’ are designed so that students
through their explorations with the software are bound to come up against inevitable
epistemological obstacles. A major challenge – arguably, the major challenge – is then to design
support for the student that provides enough freedom so they can actively engage in their task,
yet with adequate constraints so as to be able to generate feedback that assists them to achieve
our goals. We are confronted in exactly this same dilemma when working with teachers. We are
exploiting the ‘landmark’ activities in our research into teachers’ developing mathematical
knowledge for teaching as a way to expose problematic issues of around mathematical
understanding and representation (Clark-Wilson et al, 2015).

Clearly there is complexity and variability in implementing any activities in classrooms
and huge issues of ensuring alignment to school ethos and schemes of work, national curriculum
and assessment – and, last but not least, ensuring that the schools have access to all the necessary
artifacts: materials, hardware, software, texts and evaluations. All too frequently, the costs and
challenges of using digital technologies in mathematics are noted as the reason why in so many
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cases, impact has not reached expectations. But with ever increasing knowledge, a more robust
theoretical basis, along with systematic evidence from the research community, we should be
able together to move forward and support students in trajectories of learning with digital tools.

This will of course mean that we have to study how to build evidence-based, sustained,
and scalable professional development for teachers: a growing area of research. It is undoubtedly
complex as it requires systematic investigation at school, regional and national levels. For
example, a fundamental challenge for CM was not whether the nature of the innovation
‘changed’ in use – this is inevitable – but how far are these changes or ‘mutations’ were
“legitimate” or lethal” using the terms adopted by (Hung et al. 2010): that is in our context
aligned or not with the vision and aims of CM. (Clark-Wilson et al 2015)

The issue of evidence-based CPD and scaling sustainable interventions is explored in a
recent special issue of ZDM and in the survey paper for this Special issue, Roesken-Winter, Hoyles
& Blömeke (2015) pointed to challenges of scaling CPD from four perspectives: “First, ….crucial
aspects of teacher learning and what taking the learning of these crucial aspects entails. Second,
...different CPD frameworks to showcase developments in CPD research and practice over the last
40 years and the influences of different views of CDP. Third, …what developing CPD in an
evidence- based way means, before we finally discuss crucial issues of spreading CPD on a large
scale”. In this last perspective, we drew on Coburn’s four dimensions characterizing the process
of scaling CPD interventions, depth, sustainability, spread, and shift in reform ownership (Coburn,
2003).

I end by returning to this notion of ‘shift in ownership’, which resonates exactly with my
overriding concern to open up the mathematical way of thinking to more learners. I mention one
potentially exciting potential shift at least in the constructionist agenda: the massive popularity of
the Scratch programming language (https://scratch.mit.edu/), where young people can be put in
the role of designing and creating with digital media rather than simply playing and searching
online (Resnick, 2012). This phenomenon is global and massive; at the time of writing there are
8,705,136 projects being shared via the Scratch website. It is largely an initiative outside of
formal education, (see also the Hour of Code movement http://hourofcode.com/us). However in
England we have a compulsory Computing curriculum - alongside an ongoing compulsory
mathematics curriculum. In our project Scratchmaths (EEF, 2014), we are seeking to align these
two curricula at points where we can design to enhance engagement with mathematics and
mathematical reasoning in the ways explored in this paper. Thus plan is to support the building
of mathematical knowledge with programming, thus harnessing the enthusiasm and energy for
programming for mathematics learning as well as providing a glimpse of the underlying
structures. We do not underestimate the challenges – so many were documented in the 1980s -
but we intend to learn from this past experience and at the very least plan and design from the
start in partnership with teachers and detailed curricula. Is this a way we might just be able to:

“let the students learn mathematics as applied mathematics … in the sense that
mathematical knowledge is an instrument of power, making it possible to do things of
independent worth that one could not otherwise do … “ (Papert, ICME 1972)
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